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THE APPLICATION OF STOCHASTIC APPROXIMATION
METHODS TO THE BIO ASSAY PROBLEM

by

Dan Anbar §
Case Western Reserve University : ?

and
Tel Aviv University

}; Introduction. The bio assay problem of estimating the median effec-
tive dose of a preparation is probably as old as any of the important sta-
tistical problems.

With a few exceptions most of the statistical methods used are derived
from fixed sample regression techniques. There are, however, many situations
in which a sequential method would seem appropriate, Furthermore, the tra-
ditional bio-assay techniques rely heavily upon the assumed parametric model
and the threshold model for the dose-response éurve (see Sec. 2.

Stochastic approximation methods of the Robbins-Monro type seem to be
attractive candidates for replacement of traditional methods when a sequen-
tial design is feasible. (e.g. there is a short time delay between appli-
cation of treatment and the response).

Small sample simulations which have been carried out in the past (Wethorill
(1963) and Cochran and Davis (1965)) have demonstrated a very good perform-
ance of the Robbins-Monro method versus the traditional methods.

In this paper it is shown that the Robbins-Monro procedure for esti-
mating the Median Effective Dose (EDBO) is asymptotically optimal in the
sense that it yields estimators with minimal asymptotic varience, Reduction
of the asymptétic variance to the minimum in the usual Robbins-Monro process
can be done only when the slope of the dose-response curve at the estimated

value is known which implies among other things a full knowledge of the




dose~response curve, This is clearly an unrealistic situation in many cases.
A few authors constructed adaptive methods which achieve the minimal asymp-
totic variance in a purely non-parametric setting. .The application of two
such techniques due to Venter (1967) and Anbar (1976) is aléo discussed.
The resulﬁs of some small sample simulations are given in Section 5.

In Section 2 a more general model for the bio assay problem is developed.
It is demonstrated that in general any particular assumption about the
specific form of the dose-response curve is just as arbitrary as any other
such assumption., In general one would not want to assume much more than that
the curve possesses the properties of a distribution function and that the

ED

50 is well defined.

In Section 3 the Robbins-Monro procedure for estimating the EDsO is
discussed and its optimality property is proved. Venter's and Anbar's
adaptive versions are also discussed in Section L4, Section 5 is dedicated

to some numerical studies,

E‘ A model for the bio-assay problem. The‘bio-assay problem is centered

around ‘the question of obtaining efficient techniques for estimating the
median effective dose (EDSO) for a new preparation.

The ED50 is defined relative to a population of experimental animals and
the following model is assumed:

(i) To every animal in the population corresponds a fixed dose x,
so called "just effective dose", such that any dose smaller than
x would produce no reaction when administered to the animal and
any dose larger than x would produce a full reaction,

(ii) The "just effective doses" are distributed in the animal popu-

_ lation according to the distribution F(Egi) where F is a

known distribution function and |, and & > O are unknown
location and scale parameters.
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Clearly, when an animal is selected at random from the pooulation and a dose

|
|

X 1is administered to it, the probability that it would react to this dose
is F(Egi). If we assume that F is symmetric around zero, then y is the
| median of the "just effective doses" in the population. F 1is called the

| . "dose-response curve" or the "tolerance curve" and j is the EDSO'

l Thus the bio-assay problem is reduced to the problem of estimating .
The different models and techniques used, result from different choices of
F which is typically selected to be either the normal or‘the logistic dis-

tributions.

The threshold theory which has been just described seems quite artifie
cial., The resistance of an individual animal to a given drug depends-upon
a multitﬁde of variables such as diet, environmental conditions and various
physiological processes which cannot possibly be all controlled. Thus one
may consider the following general model, Let U be some abstract space.

Think of a point u, in U as a complete description of all relevant vari-

0
ables, Let p(u,x) be the probability of obtaining a reaction given the
conditions u € U and that dose x was administered. Assume that p satis-
fies the following two conditions:

(i) For every fixed u € U, p(u,x) is monotone non-decreasing in

X.

(i1) 1lim o(u,x) =1, 1lim p(u,x) = 0O for every u € U,
X-40 X-$=00

Let A be a probability measure on U. The function

(1) M(x) = f o(u,x) ar(u)
U

is the probability that a randomly selected animal would react to the dose x.

Clearly, M(x) is monotone non-decreasing with 1imiy(x) =0 and
X4~

1&2 M(x) = 1. The function M will be called the tolerance curve, If the
X 2
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equation M(x) = 1/2 has a unique solution at x =6 , 8 1is the EDsO'

A SPECIAL CASE. Let a(u) , ué U be a real valued function on U,

Assume that o(u,x) depends upon u only through a(u) and that

(@) p(u,x) = ¥(x - a(u)) where ¢ is a monotone

non-decreasing function of a real variable satisfying 0 < ¢(t) <1 and
#(t) = 1 - 4(-t) for all +t. Furthermore assume that the distribution of

a(u) induced by the measure A 1is given by F(ﬁgi) where F is symmetric
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about zero and ;3 and g > O are location and scale parameters. In this

é

% case

% «® " @
/B M + x) = [ 4(u + x - a) aF(SH) = [ y(x-to)ar(t)
i ;f * :

i =1 - [ 4(to-x) aF(t) =1 - [ (-to-x)dar(t)

=1 -.Z *(u,-x-a)dF(a—;Q) =1 - My-x) .

M is obviously monotone non-decreasing. Furthermore, M(u) = 1/2 end if
M has a positive derivative at x =y , then  is the unique solution

of the equation M(x) = 1/2, The threshold theory is obtained when a(u)

3
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is the "just effective dose" and 4 is chosen to be the function

RPN

0 if t<O0

(3) ¥(t) =
1. it £30 .

1 It should be noted that the tolerance curve M(t) is identical with
F(-t—;& if and only if 4 is of the simple form (3).

If f has a continuous derivative at some neighborhood of | then one

can easily check that
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: vhere M'(s) = & Me)| .

i ¢ tu

i: When ¢ is given by (3), (4) simplifies to .

(5) wi) =22

Remark. If one is willing to accept that the model introduced in this sec-

SRS NS

tion is more realistic than the threshold model, then even if one knows the
particular form of A in (1) (which will be probably very rare in practice),
the particular form of the dose-response curve M will still be unknown.

Thus one should be very weary of using methods which depend heavily upon

: ' the mathematical form of M without studying their robustness against

deviations from it.

2. Stochastic approximations. Stochastic approximations of the

Robbins-Monro type are sequential procedures which are designed to estimate

the zero of a regression function when the investigator can only assume

S —————

some general properties of the function but not its mathematical from,

The problem of estimating the ED (or any other percentile of the dose- :

50
response curve) falls under this category of problem since the EDsO is

the solution of the equation M(x) - 1/2 = 0, {

The Robbins-Monro procedure is the following., Let H(x) be a real
valued function of a real variable x, Let 4 be the unique solution of

the equation H(x) = 0. Let fo1 be an observable family of random vari-

ables such that EY = H(x) for every x. Let fan1 be a sequence of

« ©
%« non-negative real numbers such that € w8 and % 8, < @,
n=1

;\ﬁ ' n=1
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Let Xl be a random variable and define

(6) X=X -8 Y g 1

where Yn is a random variable with conditional distribution given

(x1 = Xjseees X = xn) the same as the distribution of Yxn.

The process (6) is the Robbins-Monro process. Under some regularity

conditions X -0 with probability one. (See e.g. Blum (1954)). For

n A;l 3 nl/a(xn-e) converges in law to a normal random variable with

mean zero and variance ogAa/(ZAa-l)' where @ > 0 is the derivative of

B ak 2e0, o= Lim E(Y, - H(x))° and A is chosen such that 2Aa > 1.

(sacks (1958)). : .
The'problem of efficiency of the Robbins-Monro process as measured by

the asymptotic variance was studied by several authors. One can easily

verify that the choice A = a'l minimizes the asymptotic variance. When

@ 1is unknown an adaptive process can be constructed. One adaptive process

was suggested by Venter (1967), Another process was studied by Anbar (1976).

The two processes are optimal in the sense that their asymptotic variance is

minimal, However, while Venter's procedure requires taking two observations

at each approximation, in Anbar's method the observations are taken one at

a time, A different way of reducing the asymptotic variance was studied by

Anbar (1973) and Abdelhamid (1973). They have shown that when Y  is dis-

tributed according to F(y-H(x)) where F is a known distribution, one

can minimize the asymptotic variance by applying a suitable transformation

to the Yn's. When Q@ is known, the optimal transformation yields a

most efficient estimator in the sense that the asymptotic variance equals

to the Cramér-Rao lower bound for estimating the zero when the regression

function is linear, Fabian (1973) have constructed a process which achieves
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the Cramér-Rao lower bound also when & is not known.

}
4
l 3
3 The results of Abdelhamid, Anbar and Fabian cannot be applied to the
v bio-assay situation because the family of distributions of the Yxfs is
£ not a shift family generated by a fixed distribution. However, as it is
i B
i shown in this paper, in the bio-assay case the Robbins-Monro process yields
|
. a most efficient procedure when Q@ is known and hence both Venter's and

Anbar's modifications can be used to produce a most efficient sequence of

_‘*Wr
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F A estimators when @ 1is unknown.
p

To apply the Robbins-Monro procedure to the bio-assay problem assume
that when a dose x 1is applied to N subjects the investigator observes

the random variable N# - the number of subjects reacting to the dose x.

If the tolerance curve is M(x) then N, is a binomial variable with
parameters (N,M(x)), Let X, Dbe the initial dose chosen by the investigator.

For n=1,2,... define

=1
(M X4 = X, - AnT (P -1/2)

where P =N /N .
The relation (7) determines sequentially a sequence of doses to be

applied.

E, Asymptotically optimal procedures. Assume that the tolerance curve

M(x) is monotone non-decreasing taking on values in [0,1] and that M'(x)
exists and continuous in some neighborhood of y and M'(y) > 0. Denote
a=M1(,). It is easy to verify thét in this case the conditions for con-
vergence and asymptotic normality of the process (7) are satisfied and thus
X, +u Wwith probability one and if 20A > 1 then /(X -u) converges to a

normal random variable with mean zero and variance Az/hN(aaA-l).

w’mmuﬁ.w\ww——v')!c-rw- s T o 7 i s
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Denote P = Nx/N. Let g be a function and define Mg(x) = Eg(px),

Assume that
a) Mg(x) is a tolerance curve,
b) Mg(u) =1/2 .

c) Mg(x) is continuously differentiable at x = with Mé(u.) > 0.

(g)

n
(7) by &(P). If in addition one substitutes in (7) A = [Mé(u,)]-l then

One can define another approximation process X by replacing Pn in

xx(xg) -+ u with probability one and

&8 L0y % 80,00

where
1 2 - SR
(8) a = :lc-i’:‘. Elg(R) - Mg(x)] /.[Mg(u)]
= Var[g(Pu)]/[Mé(u)]"’ .
Now

o e i oS NV b L i i e

n

3 N
M) = 2 /M) & 0P - M)

Simple calculations yield

(2 E ¥ ) N M' X
| i M0 = et * (e, )
E 1
4% =M (x) cov(g(Px),Px)/var(P S
Q’ A 2 -
h |
f By the Cauchy-Schwartz inequality one readily obtains
W 8
AN E
o ; (10) Var(g(Px)) Var P
r & 10 . > for all x
i - e S T .
] (1)) (1 (x))
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The right hand side of (10) at x = is the asymptotic variance of the

Robbins-Monro process (7). Since equality in (10) is achieved if and only

i
g if g(x) = cx for some constant ¢ one obtains that the Robbins-Monro

X

procedure is indeed optimal for this problem, Note that at x = the
E | B right hand side of (10) equals to [hm21'1 which is the Cramér-Rao lower
bound for estimating . when the tolerance curve is linear. Thus the

i | ¥ i
E |} process (7) is most efficient when A = l.

When @ is unknown most efficient processes exist. They are adaptive

modification of (7). Let us describe two such procedures.

Venter's procedure., The first approximation (dose) X, is arbitrary. For

1
n > 1 the (n+l)st approximation is determined by the recursive relation.

p _‘ o -l l (] n
't % (11) xn+l = xn = dn An fa'(Yn + Yn)

' n
where Y and Y are observations at X + c_ and X - c_ respectively,
n n n n n n
[dn] and (cn} are sequences of positive numbers satisfying
a = n'l(l + o(n‘l/a)) and d = cp'Y (¢c>0, 0<y<1/2) and A is
an estimator for & determined as follows.

Denote the truncation of a function f in the interval [a,b] by

b b
ey | [f]a . That is
:
- £ =b  if £(x) > b
é' 3 e f{x) 1f a<f(x) <Y
e i = a i Rzl ca .
.’ 4
"‘kt L
N Let
g _1 [ "
¥ m B =n Z (Y- -Y.)/QC. ) n-—l,2)... .
i n j=1 J J J




Then An = [Bn]z where a and b are two known numbers satisfying
a < &< b, Venter has shown the following.
23 Xn 5 a,8, as n 4 ®,
2, For 1/h<y<1/2, nl/e(xn - u) converges in distribution to a

normal random variable with mean zero and variance ce/aaa. For

v = 1/4 the asymptotic distribution of nl/a(xn- p) is normal

with mean - 2q2c2/a and variance 02/202 , Where o, is the

second derivative of M at x =y, ,

Venter also investigated the rate of convergence of An to @, As it turns

out the rate of convergence of An depends upon the choice of y and c.

The smaller vy 1is and the larger c 1is the better is the rate of conver-

gences, .waever, when vy < 1/4 a bias is introduced in the estimation of

p which increases with c¢. Thus Venter recommended to use vy = 1/L

and a moderate value of c. In the next section the performance of Venter's

procedure is examined for various values of c¢ via computer simulations.

Anbar's procedure. The first approximation Xl is chosen arbitrarily, For

n > 1 the (n+l)st approximation is determined by the recursive relation

(12) A MR N o

where Y is an observationat X and A = [B ]b where B is given by
n n n n-a n

n
b4 £ 1

il i£) Yn
i=1

fwl

for n>2 and BO and Bl are arbitrary positive numbers. The numbers

a and b are assumed to be known and a < @ < b, Anbar (1976) has shown

that A +a a.s. and nl/a(xn - u) converges in distribution to a normal

S AR s A RSN RN S SR
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random variable with mean zero and variance ce/az.
Both Venter and Anbar have suggested to compute Bn by summing for
some integer m = m(n) to n instead of from 1 to n in order to disregard

large deviations which may occur in the first approximation,

5. Numerical results. In this section some numerical studies are
~

summarized, For reference purposes the numerical simulations were carried
out along the same lines as the studies of Cochran and Davis (1965). The
dose-response curve was chosen to be the standard normal cumulative curve.

Venter's and Anbar's procedures were simulated for different total number

of experiments available (n = 12, 24) and different number of experiments

1,2,3). The mean square error and the bias

performed at each stage (m
were estimated on the basis of 100 independent repetitions of each simula-
tion. We have followed Venter's suggestion and chose vy = 1/4, Tables 1
through 6 give the MSE and bias for both Anbar's and Venter's methods as

functions of the starting point x. for the different values of n and m,

(0]
Venter's method was simulated for different values of c¢., The slope at
xey is @= (2::)-1/2 = ,3989, The truncation points for the estimating

the slope in both methods were chosen to be a = 5@ = ,1995 and
b = 1,50 = ,5984,

An examination of the simulations results reveals some interesting
phenomenae. The most striking phenomenon is the higher dependability of
Venter's method on the value of the initial dose Xo. Both MSE and bias tend

to increase fairly »apidly with Xo . This is generally true for all values

of c¢. However, the sensitivity of Venter's Method to error in the initial
dose increases significantly with c¢. On the other hand if the initial dose
is close to the EDSO a high value of c¢ vproduces very small MSE and bias,

As compared to Venter's method Anbar's method tends to produce MSE's

-~
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comparable to or higher than Venter's when the error in the initial dose is
small. For large error in the initial dose Anbar's method yields MSE's and
biases significantly smaller than Venter's method. It seems that Anbar's
method is fairly insensitive to errors in the initial dose, Commring
with Cochran and Davis results, the MSE involved in using Anbar's method

. are very similar to those obtained by using the optimal Robbins-Monro pro-

cedure when the slope of the dose-response curve at the ED is known.

50
Another important observation is that the bias component in the MSE is
typically much larger in Venter's method than in Anbar's. This is to
expected for large values of n since for § = 1/k Venter's procedure is
asymptotically biased. It seems that this fact shows up also for very small
values of n. The values of the slope estimates are not reported here,
They were computed in the study. Venter's procedure almost invariably
over estimated the slope., In fact almost all values were very close to the
upper truncating point. On the other hand, Anbar's method produced reason-
able estimates.

To summarize, if one has a very good apriory knowledge about the
location of the ED50 , Venter's method will produce very efficient esti-

mators, If on the other hand one does not have a very reliable prior know-

ledge  the use of Anbar's method involves a very little risk.

i
1
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